IMPACT OF VAPING RESTRICTIONS IN PUBLIC PLACES ON SMOKING AND VAPING

Kai-Wen Cheng

Assistant Professor, Governors State University

Research Scientist, University of Illinois at Chicago

Feng Liu

Associate Professor, The Chinese University of Hong Kong, Shenzhen

TOPS Seminar July 22, 2021

DISCLOSURES

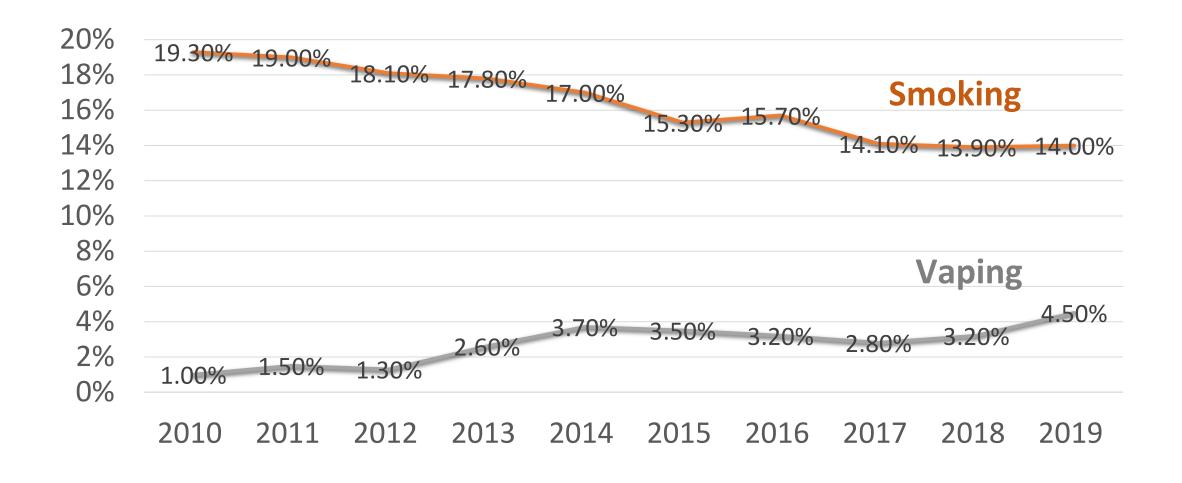
- Funding source
 - Pilot grant through Medical University of South Carolina (PI: Michael Cummings & Geoffrey Fong; NCI grant P01-CA200512).

Conflicts of interest: nothing to disclose

FINDINGS

 Indoor vaping restriction (IVR) coverage reduced adult vaping, with greater effect found among 18-35 aged subgroup.

 IVR coverage increased adult cigarette smoking, with pronounced impact found among aged 35-54, males, those with more years of education and higher income.


NICOTINE VAPING PRODUCTS (NVPs)

- NVPs commonly known as ecigarettes
 - Sometimes called e-cigs, mods, tank systems, or electronic nicotine delivery systems (ENDS)
 - Devices operate by heating a liquid solution that produces an aerosol to inhale
- Deemed tobacco products under FDA's regulations
- NVPs claim of less harmful and less toxic than combustible cigarettes

(National Academies of Sciences Engineering and Medicine, 2018; Royal College of Physicians, 2016)

TRENDS OF ADULT SMOKING AND VAPING 2010-2019

Source: CDC MMWR reports; CDC NCHS reports; original data come from NHIS

ROLES AND IMPACTS OF VAPING ON SMOKING

- NVPs harm or benefit adults
 - If vaping completely replaced smoking (i.e., substitutability) -> NVPs benefit adult health
 - If vaping coupled with smoking (i.e., complementarity) -> NVPs harm adult health

- NVPs harm youths
 - Vaping increases youth nicotine dependence (esp. for those would not use cigarettes otherwise)
 - Vaping increases later-on cigarette smoking

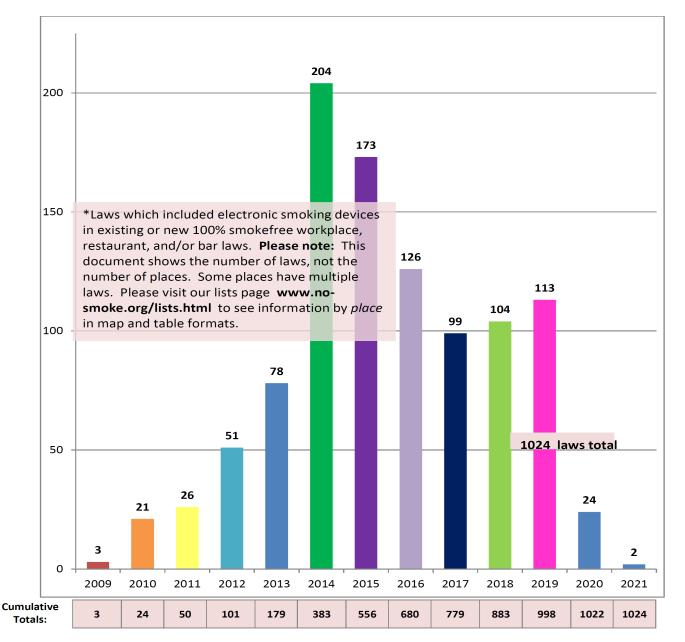
STUDY OBJECTIVES

- Investigate how indoor vaping restriction (IVR) influence vaping and cigarette smoking
- Aim to tackle relationship between vaping and cigarette smoking among adults
 - How IVR influence smoking?
 - economic substitutability? complementarity?

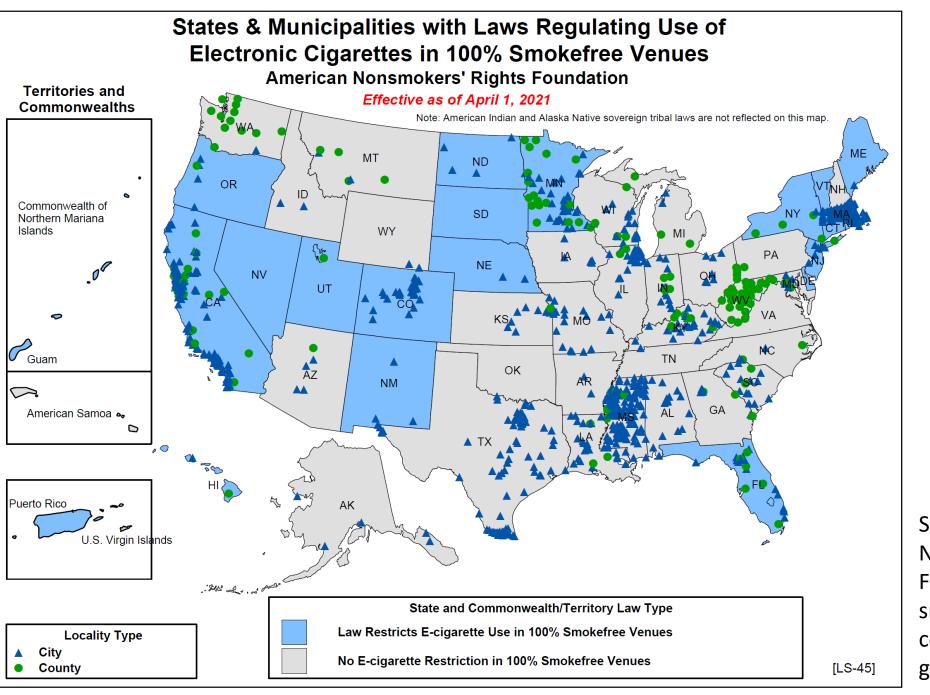
LITERATURE ON REALTIONSHIPS BETWEEN VAPING AND SMOKING

- Public health literature
 - NVP use patterns and its profiles
 - Motivations for NVP use
 - NVP use and smoking cessation
- Economics literature
 - Experimental and quasi-experimental designs
 - Regulations on smoking or vaping and its impact on use of the other product
 - State level policies: taxations, clean indoor air laws, T21 policies

LITERATURE ON IMPACT OF VAPING RESTRICTIONS


- Cooper and Pesko (2017) used US birth records 2010-2014 and found IVR coverage increased prenatal smoking.
- Cotti, Nesson, and Teft (2018) used Nielsen Homescan Panel 2011-2015, and they found that smoke-free air laws significantly reduced cigarette purchase; however, IVR did not significantly affect EC or cigarette purchase.
- Friedman, Oliver, and Busch (2021) used 2014-2018 NHIS, and found that adding vaping restrictions to smoke-free worksite was not associated with a reduction in vaping and may have attenuated impact on smoking.

OUR CONTRIBUTION


- We investigated how IVR affects vaping and smoking among adults
 - Include adults in states with state comprehensive smokefree law
 - Take advantage of time and location variations in vapefree air laws
 - Use TUS-CPS 2010-2019

Number of Local and State Laws* Enacted by Year that Prohibit the Use of Electronic Smoking Devices in Smokefree Environments

As of April 1, 2021

Source: American Nonsmokers Right Foundation https://no-smoke.org/wp-content/uploads/pdf/ECigBarChart.pdf

Source: American
Nonsmokers Right
Foundation https://nosmoke.org/wpcontent/uploads/pdf/eci
gsmap.pdf

CONCEPTUAL FRAMEWORK: IMPACT OF IVR

- IVR reduces vaping
 - through increased indirect cost of vaping (i.e., increased inconvenience)

- IVR increases smoking
 - For adult smokers: IVR discourages vaping used to replace smoking
 - For adult former smokers: IVR discourages vaping used to replace smoking relapse
- alternatively, IVR decreases smoking
 - For adult smokers: IVR discourages vaping and smoking
 - For adult former smokers: IVR discourages vaping and smoking relapse

DATA

- Tobacco Use Supplements to Current Population Survey (TUS-CPS) 2010/2011, 2014/2015, 2018/2019
 - Individual smoking, vaping, socio-demographics, state/county geocodes
- American nonsmokers right foundation tobacco control database & Census-Estimated Population (CEP) Cities and Towns
 - Clean indoor air laws (CIALs) in state and local levels
 - Strengths (partial or comprehensive smokefree) and venues (workplace, restaurant, or bar) for CIALs
 - Whether and when CIALs include NVPs
 - Used to create county IVR coverage measures

SAMPLE

- Less than half of TUS-CPS sample (40.6%) were identified with county geocodes
 - TUS-CPS only released county identifiers for counties with population size greater than 200,000

 We restricted sample to aged 18-54, living in states with state level comprehensive smokefree laws

MEASUREMENT

- Outcome variables
 - Smoking status: binary variable; everyday smokers (1), otherwise (0)
 - Vaping status: binary variable; everyday NVP users (1), otherwise (0)
- Primary independent variables (county level IVR coverages)
 - Proportion of county population covered by IVR in worksite, restaurant, and bar venues, ranges from 0-1
 - Calculation takes into account state and local level vapefree air laws
 - State preemption is considered

COUNTY IVR COVERAGES 2010-2019

DIFFERENCE-IN-DIFFERENCE APPROACH

$$Y_{itcs} = \alpha + \beta IVR_{tcs} + \gamma X_i + \delta Z_{ts} + \sigma_t + \tau_{cs} + \eta_{cs}t + \varepsilon_{itcs}$$

 Y_{itcs} smoking or vaping for individual i at time t in the county c of state s IVR_{tcs} two-month lagged of the county-level IVR coverage in three venues X_i socio-demographics (gender, age, race, marital status, education attainment, employment status, income)

 Z_{ts} state level unemployment rate, gross state product per capita, cigarette tax, EC tax, and medical marijuana laws

 σ_t and τ_{cs} represent the time fixed effect and county fixed effect $\eta_{cs}t$ denotes the county-specific linear trend

EFFECTS OF IVR COVERAGE ON ADULT VAPING

	Model 1	Model 2						
IVR bar	-0.005**	-0.001**						
IVR rst			-0.005**	-0.009**				
IVR wp					-0.005**	-0.007**		
IVR avg							-0.006**	-0.009**
Year&								
County FE	Yes							
County								
trends	No	Yes	No	Yes	No	Yes	No	Yes
OBS	45,216	45,216	45,216	45,216	45,216	45,216	45,216	45,216
Dep mean	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011

EFFECTS OF IVR COVERAGE ON ADULT SMOKING

	Model 1	Model 2						
IVR bar	0.011**	0.009						
IVR rst			0.011**	0.009				
IVR wp					0.009*	0.007		
IVR avg							0.012**	0.009
Year&								
County FE	Yes							
County								
trends	No	Yes	No	Yes	No	Yes	No	Yes
OBS	73,223	73,223	73,223	73,223	73,223	73,223	73,223	73,223
Dep mean	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098

HETROGENOUS EFFECTS OF IVR COVERAGE ON ADULT VAPING

	Aged 18-35		Aged	36-54	Ma	ale	Fen	nale
	Model 1	Model 2	Model 1	Model 2	Model 1	Model 2	Model 1	Model 2
IVR avg	-0.010**	-0.012**	-0.002	-0.006	-0.010*	-0.010	-0.003	-0.009
Year & County FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
County trends	No	Yes	No	Yes	No	Yes	No	Yes
OBS	19,925	19,925	25,291	25,291	20,799	20,799	24,417	24,417
Dep mean	0.013	0.013	0.009	0.009	0.013	0.013	0.007	0.007

HETEROGENOUS EFFECTS OF IVR COVERAGE ON ADULT CIGARETTE SMOKING

	Aged	18-35	Aged	36-54	Ma	ale	Female	
	Model 1	Model 2						
IVR avg	0.006	-0.011	0.016**	0.024**	0.015**	0.021*	0.008	-0.000
Year & county FE	Yes							
County time trends	No	Yes	No	Yes	No	Yes	No	Yes
OBS	32,082	32,082	41,141	41,141	33,331	33,331	39,892	39,892
Dep mean	0.088	0.088	0.106	0.106	0.109	0.109	0.088	0.088

HETEROGENOUS EFFECTS OF IVR COVERAGE ON ADULT CIGARETTE SMOKING

		Less than high school			school uates	Some	college		chelor or Household above income <75k		Household income>75k		
		Model 1	Model 2	Model 1	Model 2	Model 1	Model 2	Model 1	Model 2	Model 1	Model 2	Model 1	Model 2
IVR a	avg	-0.013	0.022	0.032**	0.022	-0.005	-0.010	0.010**	0.015**	0.009	0.007	0.011*	0.008
Year a coun	nty	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cour trend		No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
OB	S	6,710	6,710	16,086	16,086	20,161	20,161	30,266	30,266	52,068	52,068	21,155	21,155
Dep mea		0.154	0.154	0.172	0.172	0.119	0.119	0.032	0.032	0.121	0.121	0.041	0.041

INTERNAL VALIDITY

- Common trends between treatment and control groups prior to treatment
 - Smoking/vaping prevalence trend parallel between treatment and control groups before intervention (i.e., IVR)

- Treatment and control groups comparable prior to treatment
- Dynamics of IVR and smoking/vaping
 - No significant 6 month- 12 month- lagged or leading effects

EXTERNAL VALIDITY

 Results infer to residents in larger counties, 18-54 aged, and living in states with comprehensive smokefree laws

 States with comprehensive smokefree laws: 24 states, including Arizona, California, Colorado, Delaware, District of Columbia, Hawaii, Illinois, Iowa, Kansas, Maine, Maryland, Massachusetts, Michigan, Minnesota, Montana, New Jersey, New Mexico, New York, North Dakota, Ohio, Oregon, Utah, Washington, and Wisconsin

ROBUSTNESS CHECKS

- Findings from different model specifications consistent with our main findings
 - Conducting probit models for smoking and vaping
 - Including self respondent sampling weights
 - Focusing on venue specific vaping restriction and those covered by such law

LIMITATIONS

- Externality issue
 - TUS-CPS only released county residency for those living in counties with population size > 200,000
 - Only include states with comprehensive smokefree laws
- Future studies may focus on how IVR impacts initiation, cessation, and use patterns (e.g., dual use, switch, complete abstinent)

CONCLUSION & POLICY IMPLICATION

 Findings highlight essence of interplay among use and policy effect for cigarettes and NVPs

 Unintended IVR effect on smoking, particularly among certain subgroups

 Provide some insights for policy makers to consider as they develop policies/regulations on NVPs

Thank You!

kcheng@govst.edu (Cheng) fliu@gmail.com (Liu)